
2024 Annual Report of the Chair of Computer Science 2
(Programming Systems)

1 Staff

Julian Brandner, M. Sc., Tobias Heineken, M. Sc., Hon.-Prof. Dr.-Ing. Bernd Hindel, Hon.-Prof. Dr.-Ing.
Detlef Kips, Florian Mayer, M. Sc. (until July 31, 2024), Dr.-Ing. Norbert Oster, Akad. ORat, Prof. Dr.
Michael Philippsen (Ordinarius), Prof. em. Dr. Hans Jürgen Schneider (Emeritus), David Schwarzbeck,
M. Sc. (since October 1, 2024), Alma Sinanović (IT-support, since June 1, 2024), Margit Zenk (Secreta-
ry).

Guests and external teaching staff: Jonas Butz, M. Sc. (associate lecturer), Dr.-Ing. Klaudia Dussa-Zieger
(associate lecturer), Dr.-Ing. Tobias Feigl (associate lecturer), Dr.-Ing. Martin Jung (associate lecturer),
Patrick Kreutzer, M. Sc., Dipl.-Inf. Daniela Novac.

2 Overview

We develop scientific solutions for software engineers in industry who work on parallel software for
multicores and for distributed or embedded systems made thereof. We take a code-centric approach,
construct operational prototypes, and evaluate them both quantitatively and qualitatively. Corner stones
of our field of research:
(a) We work on programming models for heterogeneous parallelism, from which we then generate
portable and efficient code for multicores, GPUs, accelerators, mobile devices, FPGAs, etc.
(b) We help parallelize software for multicores. Our tools analyze code repositories and help developers
in migrating and refactoring projects.
(c) We analyze code. Our code analysis tools are fast, interactive, incremental and sometimes work
in parallel themselves. They not only detect race conditions, conflicting accesses to resources, etc. The
resulting suggestions on how to improve the code also show up in the IDE where they matter.
(d) We test parallel code and diagnose the root causes of problems. Our tools generate test data, track
down erratic runtime behavior, and prevent authenticity attacks.

3 Research projects

3.1 AutoCompTest – Automatic Testing of Compilers

Compilers for programming languages are very complex applications and their correctness is crucial: If a
compiler is erroneous (i.e., if its behavior deviates from that defined by the language specification), it may
generate wrong code or crash with an error message. Often, such errors are hard to detect or circumvent.
Thus, users typically demand a bug-free compiler implementation.

Unfortunately, research studies and online bug databases suggest that probably no real compiler is bug-
free. Several research works therefore aim to improve the quality of compilers. Since the formal verificati-
on (i.e., a proof of a compiler’s correctness) is often prohibited in practice, most of the recent works focus
on techniques for extensively testing compilers in an automated way. For this purpose, the compiler under
test is usually fed with a test program and its behavior (or that of the generated program) is checked: If

1



the actual behavior does not match the expectation (e.g., if the compiler crashes when fed with a valid test
program), a compiler bug has been found. If this testing process is to be carried out in a fully automated
way, three main challenges arise:

• Where do the test programs come from that are fed into the compiler?
• What is the expected behavior of the compiler or its output program? How can one determine if the

compiler worked correctly?
• How can test programs that indicate an error in the compiler be prepared to be most helpful in

fixing the error in the compiler?

While the scientific literature proposes several approaches for dealing with the second challenge (which
are also already established in practice), the automatic generation of random test programs still remains
a challenge. If all parts of a compiler should be tested, the test programs have to conform to all rules of
the respective programming language, i.e., they have to be syntactically and semantically correct (and
thus compilable). Due to the large number of rules of “real” programming languages, the generation of
such compilable programs is a non-trivial task. This is further complicated by the fact that the program
generation has to be as efficient as possible: Research suggests that the efficiency of such an approach
significantly impacts its effectivity – in a practical scenario, a tool can only be used for detecting compiler
bugs if it can generate many (and large) programs in short time.

The lack of an appropriate test program generator and the high costs associated with the development of
such a tool often prevent the automatic testing of compilers in practice. Our research project therefore
aims to reduce the effort for users to implement efficient program generators.

Large programs generated by efficient automatic generation of random test programs are difficult to use
for debugging. Typically, only a small part of the program is the cause of the error, and as many other
parts as possible must be automatically removed before the error can be corrected. This so-called test case
reduction also uses the solutions already mentioned for detecting the expected behavior so that a joint
consideration makes sense. Test case reduction is an essential component for automatically generated
programs and should be designed to process error-triggering programs from all sources.

Unfortunately, it is often unclear which of the various methods presented in the scientific literature is best
suited to a particular situation. Additionally, test case reduction can be a time-consuming process. Our
research project aims to create a significant collection of unreduced test cases and to use them to compare
and improve existing procedures.

In 2018, we started the development of such a tool. As input, it requires a specification of a programming
language’s syntactic and semantic rules by means of an abstract attribute grammar. Such a grammar
allows for a short notation of the rules on a high level of abstraction. Our newly devised algorithm then
generates test programs that conform to all of the specified rules. It uses several novel technical ideas
to reduce its expected runtime. This way, it can generate large sets of test programs in acceptable time,
even when executed on a standard desktop computer. A first evaluation of our approach did not only show
that it is efficient and effective, but also that it is versatile. Our approach detected several bugs in the C
compilers gcc and clang (and achieved a bug detection rate which is comparable to that of a state-of-the-
art C program generator from the literature) as well as multiple bugs in different SMT solvers. Some of
the bugs that we detected were previously unknown to the respective developers.

In 2019, we implemented additional features for the definition of language specifications and improved
the efficiency of our program generator. These two contributions considerably increased the throughput
of our tool. By developing additional language specifications, we were also able to uncover bugs in
compilers for the programming languages Lua and SQL. The results of our work led to a publication that
we submitted at the end of 2019 (and which has been accepted by now). Besides the work on our program

2



generator, we also began working on a test case reduction technique. It reduces the size of a randomly
generated test program that triggers a compiler bug since this eases the search for the bug’s root cause.

In 2020, we focussed on language-agnostic techniques for the automatic reduction of test programs. The
scientific literature has proposed different reduction techniques, but since there is no conclusive compa-
rison of these techniques yet, it is still unclear how efficient and effective the proposed techniques really
are. We identified two main reasons for this, which also hamper the development and evaluation of new
techniques. Firstly, the available implementations of the proposed reduction techniques use different im-
plementation languages, program representations and input grammars. Therefore, a fair comparison of
the proposed techniques is almost impossible with the available implementations. Secondly, there is no
collection of (still unreduced) test programs that can be used for the evaluation of reduction techniques.
As a result, the published techniques have only been evaluated with few test programs each, which com-
promises the significance of the published results. Furthermore, since some techniques have only been
evaluated with test programs in a single programming language, it is still unclear how well these techni-
ques generalize to other programming languages (i.e., how language-agnostic they really are). To close
these gaps, we initiated the development of a framework that contains implementations of the most im-
portant reduction techniques and that enables a fair comparison of these techniques. In addition, we also
started to work on a benchmark that already contains about 300 test programs in C and SMT-LIB 2 that
trigger about 100 different bugs in real compilers. This benchmark not only enables conclusive compari-
sons of reduction techniques but also reduces the work for the evaluation of future techniques. Some first
experiments already exposed that there is no reduction technique yet that performs best in all cases.

In this year, we also investigated how the random program generator that has been developed in the
context of this research project can be extended to not only detect functional bugs but also performance
problems in compilers. A new technique has been developed within a thesis that first generates a set of
random test programs and then applies an optimization technique to gradually mutate these programs.
The goal is to find programs for which the compiler under test has a considerably higher runtime than a
reference implementation. First experiments have shown that this approach can indeed detect performance
problems in compilers.

In 2021, we finished the implementation of the most important test case reduction techniques from the
scientific literature as well as the construction of a benchmark for their evaluation. Building upon our
framework and benchmark, we also conducted a quantitative comparison of the different techniques; to
the best of our knowledge, this is by far the most extensive and conclusive comparison of the available
reduction techniques to date. Our results show that there is no reduction technique yet that performs
best in all cases. Furthermore, we detected that there are possible outliers for each technique, both in
terms of efficiency (i.e., how quickly a reduction technique is able to reduce an input program) and
effectiveness (i.e., how small the result of a reduction technique is). This indicates that there is still
room for future work on test case reduction, and our results give some insights for the development of
such future techniques. For example, we found that the hoisting of nodes in a program’s syntax tree is
mandatory for the generation of small results (i.e., to achieve a high effectiveness) and that an efficient
procedure for handling list structures in the syntax tree is necessary. The results of our work led to a
publication submitted and accepted in 2021.

In this year, we also investigated if and how the effectiveness of our program generator can be increased
by considering the coverage of the input grammar during the generation. To this end and within a thesis,
several context-free coverage metrics from the scientific literature have been adapted, implemented and
evaluated. The results showed that the correlation between the coverage w.r.t. a context-free coverage
metric and the ability to detect bugs in a compiler is rather limited. Therefore, more advanced coverage
metrics that also consider context-sensitive, semantic properties should be evaluated in future work.

In 2022, we initiated the development of a new framework for the implementation of language-adapted

3



reduction techniques. This framework introduces a novel domain-specific language (DSL) that allows the
specification of reduction techniques in a simple and concise way. The framework and the developed DSL
make is possible to easily adapt existing reduction techniques to the peculiarities and requirements of a
specific programming language. It is our hope that such language-adapted reduction techniques can be
even more efficient and effective than the existing, language-agnostic reduction techniques. In addition,
the developed framework should also reduce the effort for the development of future reduction techniques;
this way, our framework could make a valuable contribution to the research in this area.

In 2023, the focus of the research project was on list structures, which had already been briefly addressed
in 2021: Almost all methods investigated since 2021 group nodes in the syntax tree into lists in order to
select only the necessary nodes from these lists using a list reduction. Our experiments have shown that
in some cases 70% or more of the reduction time is spent on lists with more than 2 elements. These lists
are relevant because there are several list reduction methods in the scientific literature, but they do not
differ for lists with 2 or fewer elements. Since they take such a large fraction of time, we have worked
on integrating these different list reduction methods into our implementations of the major reduction
methods developed in 2020/2021. In addition to the methods found in the literature, we also considered
methods that are only described on a website or whose source code is freely accessible.

We also investigated how a list reduction can be interrupted at one point and resumed later. The idea was
to reduce another list in the meantime, based on a prioritization, so that the list with the greater impact
on the reduction always comes first. In some cases, the hoped-for speedup occurred, but questions remain
that require further experiments with prioritizing reducers and interrupted list reduction methods.

In 2024, we successfully published the first results from the list reduction study: Replacing the list re-
ductions can accelerate established reduction techniques by up to 74.7%. As expected, techniques that
generate long lists benefit most from the change. We also found that the order of the list elements can
save up to 44.1% of the runtime. But two aspects reduce the effectiveness of reordering:

1. The textual order in which the list elements are usually lined up is already quite a good order.
2. The same aspects that make a list procedure fast make it less sensitive to the order.

In two final theses we investigated two more aspects:

1. The tool developed from 2018 - 2021 for generating test programs uses the compiler under test
only as a so-called “black box”, i.e., it generates programs without accessing any information from
the tested compiler. The thesis used coverage information from the tested compiler to improve the
generated programs.

2. Caching the results of the reductions saves time, as the compiler under test does not need to re-
execute reduction candidates. However, naive implementations of these caches become very large.
In 2023, a special caching method was introduced that can reduce the size of the cache by about
90%. The thesis dealt with the fact that unfortunately the original caching method was not suitable
for all the reduction methods in our framework.

3.2 ORKA-HPC – OpenMP for reconfigurable heterogenous architectures

High-Performance Computing (HPC) is an important component of Europe’s capacity for innovation and
it is also seen as a building block of the digitization of the European industry. Reconfigurable technologies
such as Field Programmable Gate Array (FPGA) modules are gaining in importance due to their energy
efficiency, performance, and flexibility.
There is also a trend towards heterogeneous systems with accelerators utilizing FPGAs. The great flexi-
bility of FPGAs allows for a large class of HPC applications to be realized with FPGAs. However, FPGA

4



programming has mainly been reserved for specialists as it is very time consuming. For that reason, the
use of FPGAs in areas of scientific HPC is still rare today.
In the HPC environment, there are various programming models for heterogeneous systems offering
certain types of accelerators. Common models include OpenCL (http://www.opencl.org), OpenACC (htt-
ps://www.openacc.org) and OpenMP (https://www.OpenMP.org). These standards, however, are not yet
available for the use with FPGAs.

Goals of the ORKA project are:

1. Development of an OpenMP 4.0 compiler targeting heterogeneous computing platforms with
FPGA accelerators in order to simplify the usage of such systems.

2. Design and implementation of a source-to-source framework transforming C/C++ code with
OpenMP 4.0 directives into executable programs utilizing both the host CPU and an FPGA.

3. Utilization (and improvement) of existing algorithms mapping program code to FPGA hardware.
4. Development of new (possibly heuristic) methods to optimize programs for inherently parallel

architectures.

In 2018, the following important contributions were made:

• Development of a source-to-source compiler prototype for the rewriting of OpenMP C source code
(cf. goal 2).

• Development of an HLS compiler prototype capable of translating C code into hardware. This
prototype later served as starting point for the work towards the goals 3 and 4.

• Development of several experimental FPGA infrastructures for the execution of accelerator cores
(necessary for the goals 1 and 2).

In 2019, the following significant contributions were achieved:

• Publication of two peer-reviewed papers: “OpenMP on FPGAs - A Survey” and “OpenMP to FPGA
Offloading Prototype using OpenCL SDK”.

• Improvement of the source-to-source compiler in order to properly support OpenMP-target-
outlining for FPGA targets (incl. smoke tests).

• Completion of the first working ORKA-HPC prototype supporting a complete OpenMP-to-FPGA
flow.

• Formulation of a genome for the pragma-based genetic optimization of the high-level synthesis
step during the ORKA-HPC flow.

• Extension of the TaPaSCo composer to allow for hardware synchronization primitives inside of
TaPaSCo systems.

In 2020, the following significant contributions were achieved:

• Improvement of the Genetic Optimization.
• Engineering of a Docker container for reliable reproduction of results.
• Integration of software components from project partners.
• Development of a plugin architecture for Low-Level-Platforms.
• Implementation and integration of two LLP plugin components.
• Broadening of the accepted subset of OpenMP.
• Enhancement of the test suite.

In 2021, the following significant contributions were achieved:

5



• Enhancement of the benchmark suite.
• Enhancement of the test suite.
• Successful project completion with live demo for the project sponsor.
• Publication of the paper “ORKA-HPC - Practical OpenMP for FPGAs”.
• Release of the source code and the reproduction package.
• Enhancement of the accepted OpenMP subset with new clauses to control the FPGA related trans-

formations.
• Improvement of the Genetic Optimization.
• Comparison of the estimated performance data given by the HLS and the real performance.
• Synthesis of a linear regression model for performance prediction based on that comparison.
• Implementation of an infrastructure for the translation of OpenMP reduction clauses.
• Automated translation of the OpenMP pragma “parallel for” into a parallel FPGA system.

In 2022, the following significant contributions were achieved:

• Generation and publication of an extensive dataset on HLS area estimates and actual performance.
• Creation and comparative evaluation of different regression models to predict actual system perfor-

mance from early (area) estimates.
• Evaluation of the area estimates generated by the HLS.
• Publication of the paper “Reducing OpenMP to FPGA Round-trip Times with Predictive Model-

ling”.
• Development of a method to detect and remove redundant read operations in FPGA stencil codes

based on the polyhedral model.
• Implementation of the method for ORKA-HPC.
• Quantitative evaluation of that method to show the strength of the method and to show when to use

it.
• Publication of the paper “Employing Polyhedral Methods to Reduce Data Movement in FPGA

Stencil Codes”.

In 2023, the following significant contributions were achieved:

• Development and implementation of an optimization method for canonical loop shells (e.g. from
OpenMP target regions) for FPGA hardware generation using HLS. The core of the method is a
loop restructuring based on the polyhedral model that uses loop tiling, pipeline processing, and
port widening to avoid unnecessary data transfers from/to the onboard RAM of the FPGA, increase
the number of parallel active circuits, maximize data throughput to FPGA board RAM, and hide
read/write latencies.

• Quantitative evaluation of the strengths and application areas of this optimization method using
ORKA-HPC.

• Publication of the method in the conference paper “Employing polyhedral methods to optimize
stencils on FPGAs with stencil-specific caches, data reuse, and wide data bursts”.

• Publication of a reproduction package for the optimization method.
• Presentation of the method at the conference “14th International Workshop on Polyhedral Compi-

lation Techniques” in a half-hour talk.
• Development of a method for the fully automatic integration of multi-purpose caches into FPGA

solutions generated from OpenMP.
• Evaluation of multi-purpose caches in combination with HLS generated hardware blocks.

6



• Publication of the paper “Multipurpose Cacheing to Accelerate OpenMP Target Regions on
FPGAs” (Best Paper Award).

In 2024, the following significant contributions were achieved:

• Adaptation of several already published cacheing approaches to offloaded OpenMP codes and in-
tegration of the methods into ORKA-HPC.

• Development and evaluation of novel multi-layer caches for HLS kernels.
• Publication of the results in the publication “Multilayer Multipurpose Caches for OpenMP Target

Regions on FPGAs” and presentation of the work at IWOMP 2024 in Perth.

3.3 SoftWater – Software Watermarking

Software watermarking means hiding selected features in code, in order to identify it or prove its au-
thenticity. This is useful for fighting software piracy, but also for checking the correct distribution of
open-source software (like for instance projects under the GNU license). The previously proposed me-
thods assume that the watermark can be introduced at the time of software development, and require the
understanding and input of the author for the embedding process. The goal of our research is the deve-
lopment of a watermarking framework that automates this process by introducing the watermark during
the compilation phase into newly developed or even into legacy code. As a first approach we studied a
method that is based on symbolic execution and function synthesis.
In 2018, two bachelor theses analyzed two methods of symbolic execution and function synthesis in order
to determine the most appropriate one for our approach.
In 2019, we investigated the idea to use concolic execution in the context of the LLVM compiler infra-
structure in order to hide a watermark in an unused register. Using a modified register allocation, one
register can be reserved for storing the watermark.
In 2020, we extended the framework (now called LLWM) for automatically embedding software water-
marks into source code (based on the LLVM compiler infrastructure) with further dynamic methods. The
newly introduced methods rely on replacing/hiding jump targets and on call graph modifications.
In 2021, we added other adapted, dynamic methods that have already been published, as well as a newly
developed method to LLWM. The added methods are based, among other things, on the conversion of
conditional constructs into semantically equivalent loops or on the integration of hash functions, that lea-
ve the functionality of the program unchanged but increase its resilience. Our newly developed method
IR-Mark now not only specifically selects the functions in which the code generator avoids using a certain
register. IR-Mark now adds some dynamic computation of fake values that makes use of this register to
blurr what is going on. There is a publication on both LLWM and IR-Mark.
In 2022, we added another adapted procedure to the LLWM framework. The method uses exception hand-
ling to hide the watermark.
In 2023, we adapted more methods to expand the LLWM framework. These include embedding techni-
ques based on principles of number theory and aliasing.
In 2024, we developed three new watermarking techniques: Register Expansion, SemaCall, and SideDa-
ta.
They construct hash-like arithmetics that generate a watermarking message from a secret key.
The first two techniques have been published in the paper “Register Expansion and SemaCall: 2 Low-
overhead Dynamic Watermarks Suitable for Automation in LLVM” in the proceedings of the CheckMA-
TE’24 workshop in Salt Lake City. We wrote an extended version containing the SideData watermark,
currently under peer review for the DTRAP journal.

7



4 Teaching

The Chair for Programming Systems teaches the two compulsory modules Algorithms and Data Structu-
res (AuD) and Parallel and Functional Programming (PFP) during the winter term. Due to changes of the
examination regulations the lecture of AuD took place during the winter term 2021/22 for the last time,
while the accompanying exercises continued to run until the winter term 2023/24. Since both modules are
offered to many degree programs from different faculties (Computer Science, Information and Commu-
nication Technology, Mathematics, and many more), the numbers of attending students and examinations
once again were high: 264 resp. 259 students attended PFP during the winter term 2023/24 resp. winter
term 2024/25 – the number of examinations hit 49 in AuD and 548 in PFP (each during winter term
2023/24, summer term 2024, and winter term 2024/25). The Chair offers different modules on Compi-
ler Construction and Testing of Software Systems to students specializing on programming systems. The
seminars Hallo Welt! für Fortgeschrittene and Machine Learning were also fully booked within a short
time.
The Chair for Programming Systems supervised eight master’s thesis and six bachelor’s thesis in total
during the period under report.

ICPC – International Collegiate Programming Contest an der FAU: Since 1977 the International Col-
legiate Programming Contest (ICPC) takes place every year. Teams of three students try to solve about
13 programming problems within five hours. What makes this task even harder, is that there is only one
computer available per team. The problems demand for solid knowledge of algorithms from all areas of
computer science and mathematics, e.g., graphs, combinatorics, strings, algebra, and geometry. To solve
the problems, the teams need to find a correct and efficient algorithm and implement it.
The ICPC consists of three rounds. First, each participating university hosts a local contest to find the up
to three teams that are afterwards competing in one of the various regional contests. Germany lies in the
catchment area of the Northwestern European Regional Contest (NWERC) with competing teams from
Great Britain, Benelux, Scandinavia, etc. The winners of all regionals in the world (and some second
place holders) advance to the world finals in spring of the following year.
On January 27, 2024, the Winter Contest took place once again. 108 teams from 17 universities participa-
ted, including 15 teams from Erlangen. Our best team finished 32nd. On June 22, the German Collegiate
Programming Contest was held at several German universities, with 15 teams from Erlangen. The best
FAU team secured the 22nd position out of 94 participating teams from all over Germany. The NWERC
took place on November 24 in Delft. FAU was represented by one team, which finished in the 19th po-
sition among 80 participating teams. As usual, we also conducted the main seminar “Hello World! -
Advanced Programming” in 2024.

5 Publications 2024

[1] Julian Brandner, Florian Mayer, and Michael Philippsen. Multilayer Multipurpose Caches for
OpenMP Target Regions on FPGAs. In A. Espinosa, M. Klemm, B.R. de Supinski, M. Cytow-
ski, and J. Klinkenberg, editors, OpenMP: Advancing OpenMP for Future Accelerators, volume
15195 of Springer’s Lecture Notes in Computer Science (LNCS), page 79–93, Cham, 2024. Sprin-
ger. doi:10.1007/978-3-031-72567-8_6.

[2] Julian Brandner, Florian Mayer, and Michael Philippsen. Multilayer Multipurpose Caches for
OpenMP Target Regions on FPGAs [Data set], 2024. doi:10.5281/zenodo.12755510.

[3] Leon Brasseler, Maximilian Stahlke, Thomas Robert Altstidl, Tobias Feigl, and Christopher Mutsch-
ler. Non-Line-of-Sight Detection for Radio Localization using Deep State Space Models. In

8

https://doi.org/10.1007/978-3-031-72567-8_6
https://doi.org/10.5281/zenodo.12755510


The fourteenth International Conference on Indoor Positioning and Indoor Navigation 2024 (IPIN
2024), pages 1–6, 2024.

[4] David Franco Contreras, Inigo Cortes, Georgios Kontes, Tobias Feigl, Christopher Mutschler, and
Alexander Ruegamer. Reinforcement Learning Framework for Robust Navigation in GNSS Recei-
vers. In Proceedings of the 37th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS+ 2024), pages 2392–2408, 2024. doi:10.33012/2024.19853.

[5] Tobias Heineken and Michael Philippsen. Replication Package for ’The Impact of List Reduction
for Language Agnostic Test Case Reducers’, 2024. doi:10.5281/zenodo.13835515.

[6] Lucas Heublein, Felix Ott, and Tobias Feigl. Research Avenues for GNSS Interference Classifi-
cation Robustness: Domain Adaptation, Continual Learning & Federated Learning. In European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databa-
ses, pages 1–4, 2024.

[7] Lucas Heublein, Nisha Lakshmana Raichur, Tobias Feigl, Tobias Brieger, Fin Heuer, Lennart As-
bach, Jonathan Hansen, Alexander Ruegamer, and Felix Ott. Evaluation of (Un-)Supervised Machi-
ne Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies. In
Proc. Intl. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+)
2024, volume 1, pages 1–18, 2024.

[8] Lucas Heublein, Nisha Lakshmana Raichur, Tobias Feigl, Tobias Brieger, Fin Heuer, Lennart As-
bach, Alexander Ruegamer, and Felix Ott. GNSS Interference Monitoring: Resilience of Machine
Learning Methods on Public Real-World Datasets. Navigation, Journal of the Institute of Navigati-
on, 7:1–20, 2024.

[9] Marius Kamp. Detecting Unrealizable Bit Vector Program Synthesis Problems. PhD the-
sis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2024. URL: https://open.fau.de/
handle/openfau/33619, doi:10.25593/978-3-96147-794-4.

[10] Marius Kamp. Replication Package for "Detecting Unrealizable Bit Vector Program Synthesis Pro-
blems", Jan 2024. doi:10.5281/zenodo.10593916.

[11] Florian Mayer, Julian Brandner, and Michael Philippsen. Employing Polyhedral Methods to Op-
timize Stencils on FPGAs with Stencil-specific Caches, Data Reuse, and Wide Data Bursts. In
14th International Workshop on Polyhedral Compilation Techniques, (IMPACT 2024, in conjunction
with HiPEAC 2024), page 12p, Jan 2024. URL: https://impact-workshop.org/impact2024/
#mayer24-fpgas, doi:10.48550/arXiv.2401.13645.

[12] Florian Mayer, Julian Brandner, and Michael Philippsen. Employing polyhedral methods to optimi-
ze stencils on FPGAs with stencil-specific caches, data reuse, and wide data bursts [Reproduction
Package], Jan 2024. doi:10.5281/zenodo.10396084.

[13] Felix Ott, Lucas Heublein, Nisha Lakshmana Raichur, Tobias Feigl, Jonathan Hansen, Alexander
Ruegamer, and Christopher Mutschler. Few-Shot Learning with Uncertainty-based Quadruplet Se-
lection for Interference Classification in GNSS Data. In International Conference on Localization
and GNSS, page 7, 2024. doi:10.1109/ICL-GNSS60721.2024.10578525.

[14] Jonathan Ott, Jonas Pirkl, Maximilian Stahlke, Tobias Feigl, and Christopher Mutschler. Radio
Foundation Models: Pre-training Transformers for 5G-based Indoor Localization. In The fourteenth
edition of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages
1–6, 2024.

9

https://doi.org/10.33012/2024.19853
https://doi.org/10.5281/zenodo.13835515
https://open.fau.de/handle/openfau/33619
https://open.fau.de/handle/openfau/33619
https://doi.org/10.25593/978-3-96147-794-4
https://doi.org/10.5281/zenodo.10593916
https://impact-workshop.org/impact2024/#mayer24-fpgas
https://impact-workshop.org/impact2024/#mayer24-fpgas
https://doi.org/10.48550/arXiv.2401.13645
https://doi.org/10.5281/zenodo.10396084
https://doi.org/10.1109/ICL-GNSS60721.2024.10578525


[15] David Schwarzbeck. Erweiterung eines Rahmenprogramms für das automatische Einfügen
von Software- Wasserzeichen in Quellcode. Master’s thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 2024. URL: https://cs2-gitlab.cs.fau.de/softwater/ma-david/-/
raw/master/thesis/thesis.pdf?ref_type=heads.

[16] David Schwarzbeck, Daniela Novac, and Michael Philippsen. Register Expansion and SemaCall:
2 Low-overhead Dynamic Watermarks Suitable for Automation in LLVM. In CheckMATE ’24:
Proceedings of the 2024 Research on offensive and defensive techniques in the context of Man At
The End (MATE) attacks, pages 1–10, New York, 2024. ACM. URL: https://dl.acm.org/doi/
10.1145/3689934.3690815#, doi:10.1145/3689934.3690815.

[17] David Schwarzbeck, Jan Schuh, Mercel Hammrich, Michael Philippsen, and Daniela Novac. Re-
gister Expansion and SemaCall: 2 low-overhead dynamic Watermarks suitable for Automation in
LLVM [Source code and Raw Experiment data], 2024. doi:10.5281/zenodo.13337275.

[18] Maximilian Stahlke, Tobias Feigl, Sebastian Kram, Björn Eskofier, and Christopher Mutschler.
Uncertainty-Based Fingerprinting Model Monitoring for Radio Localization. IEEE Journal of In-
door and Seamless Positioning and Navigation, 2024.

[19] Johannes Rossouw Van Der Merwe, David Franco Contreras, Tobias Feigl, and Alexander Ruega-
mer. Optimal machine learning and signal processing synergies for low-resource GNSS interference
detection and classification. IEEE Transactions on Aerospace and Electronic Systems, pages 3–17,
Jan 2024. doi:10.1109/TAES.2023.3349360.

10

https://cs2-gitlab.cs.fau.de/softwater/ma-david/-/raw/master/thesis/thesis.pdf?ref_type=heads
https://cs2-gitlab.cs.fau.de/softwater/ma-david/-/raw/master/thesis/thesis.pdf?ref_type=heads
https://dl.acm.org/doi/10.1145/3689934.3690815#
https://dl.acm.org/doi/10.1145/3689934.3690815#
https://doi.org/10.1145/3689934.3690815
https://doi.org/10.5281/zenodo.13337275
https://doi.org/10.1109/TAES.2023.3349360

	Staff
	Overview
	Research projects
	AutoCompTest – Automatic Testing of Compilers
	ORKA-HPC – OpenMP for reconfigurable heterogenous architectures
	SoftWater – Software Watermarking

	Teaching
	Publications 2024

